Chapter 1: Routing Concepts

Routing and Switching Essentials v6.0
Chapter 1 - Sections & Objectives

1.1 Router Initial Configuration

- Describe the primary functions and features of a router.
- Configure basic settings on a router to route between two directly-connected networks, using CLI.
- Verify connectivity between two networks that are directly connected to a router.

1.2 Routing Decisions

- Explain the encapsulation and de-encapsulation process used by routers when switching packets between interfaces.
- Explain the path determination function of a router.

1.3 Router Operation

- Explain routing table entries for directly connected networks.
- Explain how a router builds a routing table of directly connected networks.
- Explain how a router builds a routing table using static routes.
- Explain how a router builds a routing table using a dynamic routing protocol.
1.1 Router Initial Configuration
Router Functions

Characteristics of a Network

Network Characteristics

- Topology
- Speed
- Cost
- Availability
- Security
- Scalability
- Reliability
Router Functions

Why Routing?

The router is responsible for the routing of traffic between networks.
Routers are specialized computers containing the following required components to operate:

- Central processing unit (CPU)
- Operating system (OS) - Routers use Cisco IOS
- Memory and storage (RAM, ROM, NVRAM, Flash, hard drive)
Router Functions

Routers are Computers (cont.)

Routers use specialized ports and network interface cards to interconnect to other networks.

Back Panel of a Router
Router Functions

Routers are Computers

Router Memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Access Memory (RAM)</td>
<td>Volatile memory that provides temporary storage for various applications and processes including:</td>
</tr>
<tr>
<td></td>
<td>• Running IOS</td>
</tr>
<tr>
<td></td>
<td>• Running configuration file</td>
</tr>
<tr>
<td></td>
<td>• IP routing and ARP tables</td>
</tr>
<tr>
<td></td>
<td>• Packet buffer</td>
</tr>
<tr>
<td>Read-Only Memory (ROM)</td>
<td>Non-volatile memory that provides permanent storage for:</td>
</tr>
<tr>
<td></td>
<td>• Bootup instructions</td>
</tr>
<tr>
<td></td>
<td>• Basic diagnostic software</td>
</tr>
<tr>
<td></td>
<td>• Limited IOS in case the router cannot load the full featured IOS</td>
</tr>
<tr>
<td>Non-Volatile Random Access Memory (NVRAM)</td>
<td>Non-volatile memory that provides permanent storage for the:</td>
</tr>
<tr>
<td></td>
<td>• Startup configuration file</td>
</tr>
<tr>
<td>Flash</td>
<td>Non-volatile memory that provides permanent storage for:</td>
</tr>
<tr>
<td></td>
<td>• IOS</td>
</tr>
<tr>
<td></td>
<td>• Other system-related files</td>
</tr>
</tbody>
</table>
Router Functions

Routers Interconnect Networks

The Router Connection

Home Office

Central

Branch

Internet

Cloud

LAN

WAN
Router Functions

Routers Choose Best Paths

- Routers use static routes and dynamic routing protocols to learn about remote networks and build their routing tables.
- Routers use routing tables to determine the best path to send packets.
- Routers encapsulate the packet and forward it to the interface indicated in routing table.
Router Functions

Packet Forwarding Methods

- **Process switching** – An older packet forwarding mechanism still available for Cisco routers.

- **Fast switching** – A common packet forwarding mechanism which uses a fast-switching cache to store next hop information.

- **Cisco Express Forwarding (CEF)** – The most recent, fastest, and preferred Cisco IOS packet-forwarding mechanism.
Connect Devices

Connect to a Network

Sample LAN and WAN Connections

Central

Home Office

Branch

Internet

Cloud

LAN

WAN
To enable network access devices, must be configured with the following IP address information:

- **IP address** - Identifies a unique host on a local network.
- **Subnet mask** - Identifies the host’s network subnet.
- **Default gateway** - Identifies the router a packet is sent to when the destination is not on the same local network subnet.
Connect Devices

Document Network Addressing

Network documentation should include at least the following in a topology diagram and addressing table:

- Device names
- Interfaces
- IP addresses and subnet masks
- Default gateways
Connect Devices

Enable IP on a Host

Statically Assigned IP address – The host is manually assigned an IP address, subnet mask and default gateway. A DNS server IP address can also be assigned.

- Used to identify specific network resources such as network servers and printers.
- Can be used in very small networks with few hosts.

Dynamically Assigned IP Address – IP Address information is dynamically assigned by a server using Dynamic Host Configuration Protocol (DHCP).

- Most hosts acquire their IP address information through DHCP.
- DHCP services can be provided by Cisco routers.
Connect Devices
Enable IP on a Host

Statically Assigning an IP Address

For static assignments, enter addresses:

- IP Address
- Subnet Mask
- Default Gateway

Example:
- IP Address: 192.168.1.10
- Subnet Mask: 255.255.255.0
- Default Gateway: 192.168.1.1
Connect Devices
Enable IP on a Host

Dynamically Assigning an IP Address

This property will set the device to obtain an IP address automatically.
Connect devices

Device LEDs

CISCO 1941 LEDs

<table>
<thead>
<tr>
<th>#</th>
<th>Port</th>
<th>LED</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GE0/0 and GE0/1</td>
<td>S (Speed)</td>
<td>1 blink + pause</td>
<td>Port operating at 10 Mb/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 blink + pause</td>
<td>Port operating at 100 Mb/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 blink + pause</td>
<td>Port operating at 1000 Mb/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L (Link)</td>
<td>Green</td>
<td>Link is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off</td>
<td>Link is inactive</td>
</tr>
<tr>
<td>2</td>
<td>Console</td>
<td>EN</td>
<td>Green</td>
<td>Port is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off</td>
<td>Port is inactive</td>
</tr>
<tr>
<td>3</td>
<td>USB</td>
<td>EN</td>
<td>Green</td>
<td>Port is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off</td>
<td>Port is inactive</td>
</tr>
</tbody>
</table>
Console Access

Console Connection Requirements

<table>
<thead>
<tr>
<th>Port on Computer</th>
<th>Cable Required</th>
<th>Port on ISR</th>
<th>Terminal Emulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Port</td>
<td>RJ-45-to-DB-9 Console Cable</td>
<td>RJ-45 Console Port</td>
<td>Tera Term</td>
</tr>
</tbody>
</table>
| USB Type-A Port | • USB-to-RS-232 compatible serial port adapter
| | • Adapter may require a software driver
| | • RJ-45-to-DB-9 console cable
| | USB Type-A to USB Type-B (Mini-B USB)
| | • A device driver is required and available from cisco.com. | USB Type-B (Mini-B USB) | PuTTY |
Connect Devices
Enable IP on a Switch

- Network infrastructure devices require IP addresses to enable remote management.
- On a switch, the management IP address is assigned on a virtual interface called a switched virtual interface (SVI)

```
S1(config)# interface vlan 1
S1(config-if)# ip address 192.168.10.2 255.255.255.0
S1(config-if)# no shutdown
%LINK-5-CHANGED: Interface Vlan1, changed state to up
S1(config-if)# exit
S1(config)#
S1(config)# ip default-gateway 192.168.10.1
S1(config)#
```
Router Basic Settings

Configure Router Basic Settings

- **Name the device** – Distinguishes it from other routers
- **Secure management access** – Secures privileged EXEC, user EXEC, and Telnet access, and encrypts passwords.
- **Configure a banner** – Provides legal notification of unauthorized access.
- **Save the Configuration**
Router Basic Settings

Configure an IPv4 Router Interface

To be available, a router interface must be:

- Configured with an address and subnet mask.
- Activated using `no shutdown` command. By default LAN and WAN interfaces are not activated.
- Configured with the clock rate command on the Serial cable end labeled DCE.

Optional description can be included.

```plaintext
R1(config)# interface gigabitethernet 0/0
R1(config-if)# description Link to LAN 1
R1(config-if)# ip address 192.168.10.1 255.255.255.0
R1(config-if)# no shutdown
R1(config-if)# exit
R1(config)#
*Jan 30 22:04:47.551: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to down
R1(config)#
*Jan 30 22:04:50.899: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Jan 30 22:04:51.899: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
R1(config)#
```
Router Basic Settings

Configure an IPv6 Router Interface

Configure interface with IPv6 address and subnet mask:

- Use the `ipv6 address ipv6-address/ipv6-length [link-local | eui-64]` interface configuration command.
- Activate using the `no shutdown` command.

```
R1(config)#interface gigabitethernet 9/4
R1(config-if)#description link to LAN 1
R1(config-if)#ipv6 address 2001:db8:acad:1::1/64
R1(config-if)#no shutdown
R1(config-if)#exit
```

*Feb 3 21:38:31, 279: &LINK-3-UPDOWN: Interface GigaE1ge1/0, changed state to down
*Feb 3 21:38:41, 567: &LINK-3-UPDOWN: Interface GigabitEthernet1/0, changed state to up
*Feb 3 21:38:41, 967: &LINKPROD-5-UPDOWN: Line protocol on interface GigabitEthernet1/0, changed state to up
R1(config)#
IPv6 Basic Settings

Configure an IPv6 Router Interface (cont.)

IPv6 interfaces can support more than one address:

- Configure a specified global unicast – `ipv6address ipv6-address /ipv6-length`

- Configure a global IPv6 address with an interface identifier (ID) in the low-order 64 bits - `ipv6address ipv6-address /ipv6-length eui-64`

- Configure a link-local address - `ipv6address ipv6-address /ipv6-length link-local`

![IPv6 Topology Diagram]
Router Basic Settings

Configure an IPv4 Loopback Interface

A loopback interface is a logical interface that is internal to the router:

- It is not assigned to a physical port, it is considered a software interface that is automatically in an UP state.
- A loopback interface is useful for testing.
- It is important in the OSPF routing process.

```bash
R1(config)# interface loopback 0
R1(config-if)# ip address 10.0.0.1 255.255.255.0
R1(config-if)# exit
R1(config)#
```

*Jan 30 12:04:50.899: %LINK-3-UPDOWN: Interface loopback0, changed state to up
*Jan 30 12:04:51.899: %LINEPROTO-5-UPDOWN: Line protocol on Interface loopback0, changed state to up
Verify Connectivity of Directly Connected Networks

Verify Interface Settings

Show commands are used to verify operation and configuration of interface:

- `show ip interfaces brief`
- `show ip route`
- `show running-config`

Show commands that are used to gather more detailed interface information:

- `show interfaces`
- `show ip interfaces`
Verify Connectivity of Directly Connected Networks

Verify Interface Settings (cont.)

Verify the Routing Table

```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP, D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF interarea, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, R - RIP, M - mobile, B - BGP
*H - hop count to horizon, s - source suppressed, S - split horizon, D - Dell, U - per-user route
Gateway of last resort is not set

192.168.10.0/24 is variably subnetted, 2 subnets, 2 matches
C  192.168.10.0/24 is directly connected, GigabitEthernet0/0
L  192.168.10.1/32 is directly connected, GigabitEthernet0/0

192.168.11.0/24 is variably subnetted, 2 subnets, 2 matches
C  192.168.11.0/24 is directly connected, GigabitEthernet0/1
L  192.168.11.1/32 is directly connected, GigabitEthernet0/1

209.165.200.0/24 is variably subnetted, 2 subnets, 2 matches
```
Verify Connectivity of Directly Connected Networks
Verify IPv6 Interface Settings

Common commands to verify the IPv6 interface configuration:

- **show ipv6 interface brief** - displays a summary for each of the interfaces.
- **show ipv6 interface gigabitethernet 0/0** - displays the interface status and all the IPv6 addresses for this interface.
- **show ipv6 route** - verifies that IPv6 networks and specific IPv6 interface addresses have been installed in the IPv6 routing table.

```
R1# ping 2001:db8:ac0d:1::10
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:db8:ac0d:1::10, timeout is 2
seconds:
!!!!!!!
Success rate is 100 percent (5/5)
R1#
```
Show command output can be managed using the following command and filters:

- Use the `terminal length number` command to specify the number of lines to be displayed.
- To filter specific output of commands use the `(|)pipe character` after show command. Parameters that can be used after pipe include:
 - `section`, `include`, `exclude`, `begin`
Verify Connectivity of Directly Connected Networks

Command History Feature

The command history feature temporarily stores a list of executed commands for access:

- To recall commands press Ctrl+P or the UP Arrow.
- To return to more recent commands press Ctrl+N or the Down Arrow.
- By default, command history is enabled and the system captures the last 10 commands in the buffer. Use the show history privileged EXEC command to display the buffer contents.
- Use the terminal history size user EXEC command to increase or decrease size of the buffer.
1.2 Routing Decisions
Switching Packets Between Networks

Router Switching Function

Encapsulating and De-Encapsulating Packets
Switching Packets Between Networks

Send a Packet

PC1 Sends a Packet to PC2

Because PC2 is on different network, I will encapsulate the packet and send it to the router on MY network. Let me find that MAC address....

Layer 2 Data Link Frame

<table>
<thead>
<tr>
<th>Dest. MAC</th>
<th>Source MAC</th>
<th>Type</th>
<th>Source IP</th>
<th>Dest. IP</th>
<th>IP fields</th>
<th>Data</th>
<th>Trailer</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-10</td>
<td>00-A-10</td>
<td>0x800</td>
<td>192.168.1.10</td>
<td>192.168.4.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PC1’s ARP Cache for R1

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td>00-10</td>
</tr>
</tbody>
</table>
Switching Packets Between Networks
Forward to Next Hop

R1 Forwards the Packet to PC2

My ARP table tells me that PC2 uses MAC address 0B-31.

Layer 2 Data Link Frame
- Dest. MAC: 0B-31
- Type: 0x800

Packet's Layer 3 data
- Source IP: 192.168.1.10
- Dest. IP: 192.168.4.10

R1's ARP Cache
- IP Address: 192.168.2.2
- MAC Address: 0B-31

R1's Routing Table

<table>
<thead>
<tr>
<th>Network</th>
<th>Hops</th>
<th>Next-hop-IP</th>
<th>Exit Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.0/24</td>
<td>0</td>
<td>Dir. Connect.</td>
<td>Fa0/0</td>
</tr>
<tr>
<td>192.168.2.0/24</td>
<td>0</td>
<td>Dir. Connect.</td>
<td>Fa0/1</td>
</tr>
<tr>
<td>192.168.3.0/24</td>
<td>1</td>
<td>192.168.2.2</td>
<td>Fa0/1</td>
</tr>
<tr>
<td>192.168.4.0/24</td>
<td>2</td>
<td>192.168.2.2</td>
<td>Fa0/1</td>
</tr>
</tbody>
</table>
Switching Packets Between Networks

Packet Routing

R2 Forwards the Packet to R3

Layer 2 Data Link Frame

Packet’s Layer 3 Data

Source IP 192.168.1.10

Dest. IP 192.168.4.10

IP fields

Data

Trailer

R2’s Routing Table

<table>
<thead>
<tr>
<th>Network</th>
<th>Hops</th>
<th>Next-hop-IP</th>
<th>Exit Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.0/24</td>
<td>1</td>
<td>192.168.3.1</td>
<td>Fa/0/0</td>
</tr>
<tr>
<td>192.168.2.0/24</td>
<td>0</td>
<td>Dir. Connect.</td>
<td>Fa/0/0</td>
</tr>
<tr>
<td>192.168.3.0/24</td>
<td>0</td>
<td>Dir. Connect.</td>
<td>S0/0/0</td>
</tr>
<tr>
<td>192.168.4.0/24</td>
<td>1</td>
<td>192.162.3.2</td>
<td>S0/0/0</td>
</tr>
</tbody>
</table>
Switching Packets Between Networks
Reach the Destination

R3 Forwards the Packet to PC2

I have a route out my Fa0/0 interface to reach PC2.

Layer 2 Data Link Frame
Packet’s Layer 3 data

<table>
<thead>
<tr>
<th>Type</th>
<th>Source IP</th>
<th>Dest. IP</th>
<th>IP fields</th>
<th>Data</th>
<th>Trailer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x800</td>
<td>192.168.1.10</td>
<td>192.168.4.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R3’s Routing Table

<table>
<thead>
<tr>
<th>Network</th>
<th>Hops</th>
<th>Next-hop-IP</th>
<th>Exit Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.0/24</td>
<td>2</td>
<td>192.168.3.1</td>
<td>S0/0/0</td>
</tr>
<tr>
<td>192.168.2.0/24</td>
<td>1</td>
<td>192.168.3.1</td>
<td>S0/0/0</td>
</tr>
<tr>
<td>192.168.3.0/24</td>
<td>0</td>
<td>Dir. Connect.</td>
<td>S0/0/0</td>
</tr>
<tr>
<td>192.168.4.0/24</td>
<td>0</td>
<td>Dir. Connect.</td>
<td>Fa0/0</td>
</tr>
</tbody>
</table>
Path Determination
Routing Decisions

Packet Forwarding Decision Process

1. Packet arrives on interface.
2. Router searches the routing table for a match.
3. Does the destination IP address match the subnet of a directly connected interface?
 - Yes: Check ARP cache (ARP if necessary) and forward to host on local subnet.
 - No: Remote network?
4. Remote network?
 - Yes: Encapsulate the frame and forward out of the exit interface to the next hop.
 - No: Is there a gateway of last resort available?
5. Is there a gateway of last resort available?
 - Yes: Encapsulate the frame and forward out of the exit interface to the next hop.
 - No: Drop the packet.
Path Determination

Best Path

- Best path is selected by a routing protocol based on the value or metric it uses to determine the distance to reach a network:
 - A metric is the value used to measure the distance to a given network.
 - Best path to a network is the path with the lowest metric.

- Dynamic routing protocols use their own rules and metrics to build and update routing tables:
 - Routing Information Protocol (RIP) - Hop count
 - Open Shortest Path First (OSPF) - Cost based on cumulative bandwidth from source to destination
 - Enhanced Interior Gateway Routing Protocol (EIGRP) - Bandwidth, delay, load, reliability
Path Determination
Load Balancing

- When a router has two or more paths to a destination with equal cost metrics, then the router forwards the packets using both paths equally:
 - Equal cost load balancing can improve network performance.
 - Equal cost load balancing can be configured to use both dynamic routing protocols and static routes.
Path Determination

Administrative Distance

- If multiple paths to a destination are configured on a router, the path installed in the routing table is the one with the lowest Administrative Distance (AD):
 - A static route with an AD of 1 is more reliable than an EIGRP-discovered route with an AD of 90.
 - A directly connected route with an AD of 0 is more reliable than a static route with an AD of 1.

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Administrative Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>0</td>
</tr>
<tr>
<td>Static</td>
<td>1</td>
</tr>
<tr>
<td>EIGRP summary route</td>
<td>5</td>
</tr>
<tr>
<td>External BGP</td>
<td>20</td>
</tr>
<tr>
<td>Internal EIGRP</td>
<td>90</td>
</tr>
<tr>
<td>IGRP</td>
<td>100</td>
</tr>
<tr>
<td>OSPF</td>
<td>110</td>
</tr>
<tr>
<td>IS-IS</td>
<td>115</td>
</tr>
<tr>
<td>RIP</td>
<td>120</td>
</tr>
<tr>
<td>External EIGRP</td>
<td>170</td>
</tr>
<tr>
<td>Internal BGP</td>
<td>200</td>
</tr>
</tbody>
</table>
1.3 Router Operation
The Routing Table

- A routing table is a file stored in RAM that contains information about:
 - Directly connected routes
 - Remote routes
Analyze the Routing Table

Routing Table Sources

The **show ip route** command is used to display the contents of the routing table:

- **Local route interfaces** - Added to the routing table when an interface is configured. (displayed in IOS 15 or newer for IPv4 routes and all IOS releases for IPv6 routes.)
- **Directly connected interfaces** - Added to the routing table when an interface is configured and active.
- **Static routes** - Added when a route is manually configured and the exit interface is active.
- **Dynamic routing protocol** - Added when EIGRP or OSPF are implemented and networks are identified.
Analyze the Routing Table

Routing Table Sources (cont.)

Routing Table of R1

```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - EGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
      * - candidate default, U - per-user static route, O - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
D 10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
```
Interpreting the entries in the routing table

Legend:
- Identifies how the network was learned by the router.
- Identifies the destination network.
- Identifies the administrative distance (trustworthiness) of the route source.
- Identifies the metric to reach the remote network.
- Identifies the next-hop IP address to reach the remote network.
- Identifies the amount of elapsed time since the network was discovered.
- Identifies the outgoing interface on the router to reach the destination network.
Directly Connected Routes

Directly Connected Interfaces

A newly deployed router, without any configured interfaces, has an empty routing table.
Directly Connected Routes

Directly Connected Routing Table Entries

Directly Connected Network Entry Identifiers

Legend
- Identifies how the network was learned by the router.
- Identifies the destination network and how it is connected.
- Identifies the interface on the router connected to the destination network.

C: 192.168.10.0/24 is directly connected, GigabitEthernet0/0
L: 192.168.10.1/32 is directly connected, GigabitEthernet0/0
Directly Connected Routes

Directly Connected Example

Verifying the Directly Connected Routing Table Entries

```
R1# show ip route | begin Gateway
Gateway of last resort is not set

192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
 C 192.168.10.0/24 is directly connected, GigabitEthernet0/0
 L 192.168.10.1/32 is directly connected, GigabitEthernet0/0

192.168.11.0/24 is variably subnetted, 2 subnets, 2 masks
 C 192.168.11.0/24 is directly connected, GigabitEthernet0/1
 L 192.168.11.1/32 is directly connected, GigabitEthernet0/1

209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
 C 209.165.200.0/24 is directly connected, Serial0/0/0
 L 209.165.200.225/32 is directly connected, Serial0/0/0

R1#
```
Directly Connected Routes

Directly Connected IPv6 Example

Show the IPv6 Route Table

R1# show ipv6 route
IPv6 Routing Table - default - 5 entries
Codes: C - Connected, L - Local, S - Static,
 U - Per-user Static route, B - BGP, R - RIP
 H - NHRP, I1 - ISIS L1, I2 - ISIS L2
 IA - ISIS interarea, IS - ISIS summary, D - EIGRP
 EX - EIGRP external, ND - ND Default
 NDp - ND Prefix, DCE - Destination, NDr - Redirect
 O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1
 OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1
 ON2 - OSPF NSSA ext 2
C 2001:DB8:ACAD:1::/64 [0/0]
 via GigabitEthernet0/0, directly connected
L 2001:DB8:ACAD:1::1/128 [0/0]
 via GigabitEthernet0/0, receive
Statically Learned Routes

Static Routes

Static routes and default static routes can be implemented after directly connected interfaces are added to the routing table:

- Static routes are manually configured.
- They define an explicit path between two networking devices.
- Static routes must be manually updated if the topology changes.
- Their benefits include improved security and control of resources.
- Configure a static route to a specific network using the `ip route network mask {next-hop-ip | exit-intf}` command.
- A default static route is used when the routing table does not contain a path for a destination network.
- Configure a default static route using the `ip route 0.0.0.0 0.0.0.0 {exit-intf | next-hop-ip}` command.
Statically Learned Routes

Static Route Example

Entering and Verifying a Static Default Route

```
R1(config)# ip route 0.0.0.0 0.0.0.0 Serial0/0/0
R1(config)# exit
R1#
*Feb 1 10:19:34.483: %SYS-5-CONFIG_I: Configured from console by console

R1# show ip route | begin Gateway
Gateway of last resort is 0.0.0.0 to network 0.0.0.0
S* 0.0.0.0/0 is directly connected, Serial0/0/0
   192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
     C 192.168.10.0/24 is directly connected, GigabitEthernet0/0
     L 192.168.10.1/32 is directly connected, GigabitEthernet0/0
   192.168.11.0/24 is variably subnetted, 2 subnets, 2 masks
     C 192.168.11.0/24 is directly connected, GigabitEthernet0/1
     L 192.168.11.1/32 is directly connected, GigabitEthernet0/1
```
Statically Learned Routes

Static Route Example (cont.)

Entering and Verifying a Static Route

```
R2(config)# ip route 192.168.10.0 255.255.255.0 s0/0/0
R2(config)# ip route 192.168.11.0 255.255.255.0 192.165.200.225
R2(config)# exit
R2# show ip route | begin Gateway
Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.1.1.0/24 is directly connected, GigabitEthernet0/0
L 10.1.1.1/32 is directly connected, GigabitEthernet0/0
C 10.1.2.0/24 is directly connected, GigabitEthernet0/1
L 10.1.2.1/32 is directly connected, GigabitEthernet0/1
S 192.168.10.0/24 is directly connected, Serial0/0/0
S 192.168.11.0/24 [1/0] via 192.165.200.225
209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
C 209.165.200.224/30 is directly connected, Serial0/0/0
```
Statically Learned Routes

Static IPv6 Route Examples

Entering and Verifying an IPv6 Static Default Route

```
R1(config)# ipv6 route ::/0 s0/0/0
R1(config)# exit
R1#
```

```
R1# show ipv6 route
IPv6 Routing Table - default - 8 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static
route

B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary,
D - EIGRP
EX - EIGRP external, ND - ND Default, NDp - ND Prefix,
DCE - Destination
NoR - Redirect, O - OSPF Intra, OI - OSPF Inter,
OE1 - OSPF ext 1
OE2 - OSPF ext 2, ON1 - OSPF NSGA ext 1, ON2 - OSPF NSGA ext 2
S ::/0 [1/0]
  via Serial0/0/0, directly connected
C 2001:0DB8:ACAD:1::/64 [0/0]
  via GigabitEthernet0/0, directly connected
```
Statically Learned Routes

Static IPv6 Route Examples

R2(config)# ipv6 route 2001:0DB8:ACAD:1::/64 2001:0DB8:ACAD:3::1
R2(config)# ipv6 route 2001:0DB8:ACAD:2::/64 s0/0/0
R2(config)#
R2#

R3# show ipv6 route
IPv6 Routing Table - default - 9 entries
Codes: C - Connected, L - Local, S - Static,
U - User - user Static route
B - BGP, R - RIP, H - RIP, 1L - ISIS L1
2L - ISIS L2, IA - ISIS Interarea, IS - ISIS summary,
D - EIGRP
EX - EIGRP external, ND - ND Default, NDP - NDP Prefix,
DCE - Destination
NDX - Redirect, O - OSPF Intra, OI - OSPF Inter,
OE1 - OSPF ext 1
OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
S 2001:0DB8:ACAD:1::/64 [1/0]
via 2001:0DB8:ACAD:3::1
S 2001:0DB8:ACAD:2::/64 [1/0]
via Serial0/0/0, directly connected
Dynamic Routing Protocols

Dynamic Routing

- Dynamic routing is used by routers to share information about the reachability and status of remote networks.
- It performs network discovery and maintains routing tables.
- Routers have converged after they have finished exchanging and updating their routing tables.

Dynamic Routing Scenario

Hello I am R1 and I am using EIGRP to let my neighbors know that I can reach the following networks:
- 192.168.10.0/24
- 192.168.11.0/24
- 209.165.200.224/30

Hello R1, I am R2 and I am also using EIGRP to let my neighbors know that I can reach the following networks:
- 10.1.1.0/24
- 10.1.2.0/24
- 209.165.200.224/30
I am also the default gateway to the Internet.
Cisco routers can support a variety of dynamic IPv4 routing protocols including:

- **EIGRP** – Enhanced Interior Gateway Routing Protocol
- **OSPF** – Open Shortest Path First
- **IS-IS** – Intermediate System-to-Intermediate System
- **RIP** – Routing Information Protocol

Use the `router ?` Command in global configuration mode to determine which routing protocols are supported by the IOS.
Dynamic Routing Protocols
IPv4 Dynamic Routing Examples

```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.226 to network 0.0.0.0

D*EX 0.0.0.0/0 [170/2297856] via 209.165.200.226, 00:07:29, Serial0/0/0
     10.0.0.0/24 is subnetted, 2 subnets
D     10.1.1.0 [90/2172416] via 209.165.200.226, 00:07:29, Serial0/0/0
     10.1.2.0 [90/2172416] via 209.165.200.226, 00:07:29, Serial0/0/0
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
     192.168.10.0/24 is directly connected, GigabitEthernet0/0
     192.168.10.1/32 is directly connected, GigabitEthernet0/0
C     192.168.11.0/24 is variably subnetted, 2 subnets, 2 masks
     192.168.11.0/24 is directly connected, GigabitEthernet0/1
L     192.168.11.1/32 is directly connected, GigabitEthernet0/1
L     209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
C     209.165.200.224/30 is directly connected, Serial0/0/0
L     209.165.200.225/32 is directly connected, Serial0/0/0
```
Dynamic Routing Protocols

IPv6 Routing Protocols

Cisco routers can support a variety of dynamic IPv6 routing protocols including:

- **RIPng** (RIP next generation)
- **OSPFv3**
- **EIGRP for IPv6**

Use the `ipv6 router ?` command to determine which routing protocols are supported by the IOS.

```plaintext
R1(config)# ipv6 router ?
    eigrp      Enhanced Interior Gateway Routing Protocol (EIGRP)
    ospf       Open Shortest Path First (OSPF)
    rip        IPv6 Routing Information Protocol (RIPv6)

R1(config)# router
```
Dynamic Routing Protocols

IPv6 Dynamic Routing Examples

Verify Dynamic Routes

R1# show ipv6 route
IPv6 Routing Table - default - 9 entries
Codes: C - Connected, L - Local, S - Static, D - Peer-user Static route
B - BGP, R - RIP, H - NHOP, I1 - ISIS I1
I2 - ISIS I2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
EX - EIGRP external, ND - ND Default, NDP - ND Prefix, DCE -
Destination
NDr - Redirect, O - OSPF Intra, 0I - OSPF Inter, 0E1 - OSPF ext 1
0E2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

C 2001:DB8:ACAD:3::/64 [0/0]
 via Serial0/0/0, directly connected
L 2001:DB8:ACAD:3::1/128 [0/0]
 via Serial0/0/0, receive
D 2001:DB8:ACAD:4::/64 [50/2172416]
 via FE80::D68C:B5EF:FECE:A120, Serial0/0/0
D 2001:DB8:ACAD:5::/64 [50/2172416]
 via FE80::D68C:B5EF:FECE:A120, Serial0/0/0
L FF00::/8 [0/0]
 via Null0, receive
R1#
1.4 Chapter Summary
Chapter Summary

Summary

- Describe the primary functions and features of a router.
- Configure basic settings on a router to route between two directly-connected networks, using CLI.
- Verify connectivity between two networks that are directly connected to a router.
- Explain how routers use information in data packets to make forwarding decisions in a small to medium-sized business network.
- Explain the encapsulation and de-encapsulation process used by routers when switching packets between interfaces.
- Explain the path determination function of a router.
- Explain how a router learns about remote networks when operating in a small to medium-sized business network.
- Explain how a router builds a routing table of directly connected networks.
- Explain how a router builds a routing table using static routes.
- Explain how a router builds a routing table using a dynamic routing protocol.